
MA 3046 - Matrix Analysis
Laboratory Number 6

Condition, Stability and “Good” and “Bad” Problems and Algorithms

As we have often noted before, numerical linear algebra involves considerations some-
what different from both those which arise in the introductory linearly courses and those
which arise in the study of other numerical methods, such as the numerical approximation
of integrals. In the case of the system of linear equations, i.e.,

A x = b (1)

a primary reason for these differing considerations is the fact that, according to introduc-
tory linear algebra theory, this problem is exactly solvable, by Gaussian elimination, in a
finite number of steps. (For this reason, we call Gaussian Elimination a direct method.)
However, as we have discussed extensively discussed, “real world” applications tend to
involve very large matrices, for which the resulting number of computations (and hence
the time) required to perform a given algorithm can become truly daunting, even on a
“fast” computer. Moreover, as we have also discussed, computers’ floating-point num-
ber systems are inexact, and while the individual errors inherent in any single operation
may be negligible, the accumulated effects of such errors may become severe when a large
number of computations must be performed. Lastly, the actual data, e.g. in this case
the values of A and b which we “feed” to a particular computer for a given problem
are almost certain inexact, due to such causes as measurement errors, production quality
variations, variations allowed under manufacturer’s specifications, etc. All of these lat-
ter effects, which are generally many orders of magnitude larger than machine precision,
introduce further inaccuracies into the solution process.

As we have already discussed in class, the degree to which the relative changes in
the data of a problem are reflected in relative changes in the solution of that problem
are referred to as the condition of that problem, and are expressed, quantitatively, by the
condition number of that problem. For (1) is given by

κ(A) = kA kkA−1 k (2)

and relative changes (or errors) in the data can be amplified by an factor up to the condition
number. Therefore, colloquially, we shall consider an algorithm “good” if it has a “small”
condition number (relative to the order of magnitude of the errors we expect), and “bad” if
it does not. Mathematically, we refer to these cases as well-conditioned, and ill-conditioned,
respectively.

The complementary consideration is how well can we expect an actual algorithm, i.e.
some specified sequence of computations, implemented in a computer program, to perform,
given the inaccuracies of floating point arithmetic, assuming the intial data are correct. In
general, this question is addressed in terms of discussing the stability of the algorithm. We

97



call an algorithm forward stable if it can (relatively) accurately solve any problem, i.e., in
the case of (1), if we can always expect the computed solution, x̃, to satisfy

kx− x̃ k
kx k ≤ C²machine (3)

and backward stable if the computed solution always exactly solves a problem with data
close to the data used by the algorithm, i.e. again in the case of (1), if

Ãx̃ = b̃ where

"
kA− Ã k
kA k +

kb− b̃ k
kb k

#
≤ C0²machine (4)

where C and C 0 are constants, and x denotes the exact (infinite precision) solution for
the given data. (For an algorithm to be practically backward stable, generally we need C 0

to be relatively small, considering machine precision, say, for MATLAB, on the order of
magnitude of tens to thousands.) Analysis shows that forward stability is virtually impos-
sible to achieve, since a truly ill-conditioned problem can render virtually any algorithm
useless. Backward stability, however, is not only often relatively easy to prove, but it also
relatively easy to show that, for a backward stable algorithm

kx− x̃ k
kx k ≤ C0κ(A)²machine (5)

or, colloquially

A practically backward stable algorithm will always produce a reasonably ac-
curate solution to a reasonably well-conditioned problem

In this laboratory, we shall investigate both simulated low-precision machines and full
MATLAB precision.

Basic Gaussian elimination, of course, using elementary row operations, i.e.

Rk ← Rk − lkjRi (6)

to reduce an augmented matrix to (augmented) echelon form. The lkj multipliers here do
depend on the values of the elements in the column being eliminated, and specifically the
denominator of lkj is the coefficient (ajj) in the pivot position of that column. (Unless,
of course that pivot element is zero, in which case some rows must be interchanged before
proceeding.)

Floating-point arithmetic introduces several potentially serious problems because of
fundamental aspects of Gaussian elimination:

• First, because elementary row operations require (potentially catastrophic can-
cellation) subtractions, elimination may fail to accurately compute zero pivots,
producing instead only “small” ones.

98



• Secondly, because of this, critical decisions in Gaussian elimination, e.g. row
interchanges, that depend on whether or not elements are exactly zero, may not
correctly made.

• Finally, if one of the Gaussian elimination multipliers (lkj) ever become suffi-
ciently large, because of a small pivot, even though the pivot is not theoretically
exactly zero, then, numerically, the elementary row operation (6) may effectively
produce

Rk ← (−lkj)Ri
which results in the effective loss of most or even all of the “information” in Rk,
and, moreover, produces a (near) singular matrix!

In this laboratory, we shall use the previously-introduced variants of Gaussian elimina-
tion contained in programs ge basic.m, which performs step-by-step elimination in full
MATLAB precision, and ge steps chop.m, which uses chop( ) to simulate Gaussian
elimination with row interchanges only to avoid zero pivots in finite-precision machine, to
further study some of these specific aspects. (Because those programs were introduced in
previous labs, we don’t list them here again.)

We must reemphasize, however, that, in general, there is seldom a good reason to
write a special computer program to solve a problem for which good, commercial-grade
codes already exist. Gaussian elimination is an excellent example of this. MATLAB’s
built-in backslash (\) command provides an extremely robust, high-quality solver for

Ax = b

and we strongly encourage its use for virtually any instance of system (1). The only reason
we use such ”home-grown” Gaussian elimination codes as ge steps chop.m is because
MATLAB is simply too accurate (²machine

.
= 10−16) to allow us to easily observe the

effects of floating-point errors, and how these effects can propagate through an algorithm.

Therefore, in the second part of the laboratory, we will consider the effect of condition
on MATLAB’s standard backslash operator, which, as we have noted before, utilizes a
variant of Gaussian elimination to solve (1) when A is square. We do this in next script,
cond nbr.m (Figure 6.4), which uses the backslash (\), norm() and cond() commands,
as well as rand(), to investigate the fundamental accuracy inequality (5) above. It does
this by generating two hundred random fifty by fifty matrices (A). For each, a right-hand
vector (b) corresponding to the solution

xtrue = [ 1 1 1 ... 1 ]T

is generated by “normal” matrix multiplication, i.e.

b = A · xtrue

(Note that this calculation will be simply be equivalent to summing each row of A, and
because rand( ) ensures all of the elements of A are positive, this sum should be accurate

99



NA = 50 ;
data = [ ] ;

%
for n = 1:200 ;
a = rand(NA) ;

%
xtrue = ones(NA,1);
b = a*xtrue ;

%
xcalc = a\b ;
reler = norm(xtrue-xcalc)/norm(xtrue) ;

%
data = [ data ; cond(a) reler ] ;

%
end

%
loglog( data(:,1) , data(:,2) , ’*’ )
xlabel(’cond(a)’) ;
ylabel(’norm(e)/norm(x)’) ;
title(’Relation of Relative Error to Condition Number’)

Figure 6.4 - Listing of Program cond nbr.m

to full machine precision.) With this computed right-hand side, the resulting system of
the form (1) is then “solved,” using MATLAB’s backslash command, for a computed solu-
tion, xcalc. (This solution will, in general, not be exactly correct due to the accumulated
effects of round-off errors in the Gaussian elimination process.) The relative accuracies of
each of these solutions is then computed and graphically displayed relative to the condi-
tion number of the associated matrix. (Note that both norm() and cond() in MATLAB
implicitly use the Euclidean (i.e., k · k2) norm, rather than the infinity or row-sum norm
(i.e., k · k∞) that we also commonly use. While these two norms are not the same, they
produce sufficiently similar results that we can use either here.)

100



Name:

MA 3046 - Matrix Analysis
Laboratory Number 6

Condition, Stability and “Good” and “Bad” Problems and Algorithms

1. Copy to your local directory the file:

cond nbr.m

Be sure that you still have, on your disk for earlier labs, the programs

ge basic.m , ge steps chop.m and bwd solve chop.m

Then start MATLAB.

2. Using your texteditor to open the ge basic.m and ge steps chop.m script and review
them until you are fairly comfortable with the flow of MATLAB logic and the computa-
tions.

3. Give the MATLAB commands

clear

global NDIGITS

NDIGITS = 3

Then create the 4× 4 matrix

A =


2.03 1.00 9.32 5.25
−2.01 −0.98 −10.5 −3.31
6.04 7.47 4.19 6.72
2.72 4.45 8.46 8.38


and the column vector:

b =


1
1
1
1



101



4. For the matrix determined in part 3, determine the condition number

κ(A)

5. For the matrix and vector created in part 3, use the MATLAB backslash function to
solve Ax = b, and record the result

xtrue =





6. Using the vector xtrue computed in part 5, and the original right-hand side, compute:

kb−Axtrue k
kb k

Briefly explain what this calculation means, and whether or not the result seems reason-
able.

102



7. Now, again using the matrix and vector from part 3, run the MATLAB program
ge basic.m on the augmented matrix [ A | b]. Look carefully for the appearance of small
pivots, and the resulting effects.

Record the final echelon augmented matrix:

uwork =




Based on this result, use the MATLAB backslash command, along with the proper sub-
matrices of uwork to compute the solution resulting from using Gaussian elimination,
without partial pivoting,in full MATLAB precision:

xfull =




Briefly describe how well this agrees with the answer computed in part 5, and why that
should or should not have been expected.

103



8. Now run the MATLAB program ge steps chop.m on the same augmented matrix as
in problem 7. Look now at what happens when a small pivots appears, and the resulting
effects.

Based on the final echelon matrix:

uwork =




compute the solution resulting from using Gaussian elimination, with partial pivoting, in
a three-digit, decimal, rounding machine:

x̃4 =




Compare the accuracy of this solution with that of the solutions obtained in parts 5-7
above.

104



9. Determine the condition number of the upper triangular Gaussian Elimination matrix U
which is located in the left portion of the augmented matrix uwork computed in part 8.

κ(U)

Compare this to the value of the condition number of the original matrix A. What does
this imply about possible behavior of “plain” Gaussian elimination?

10. Study the MATLAB script file cond nbr.m to make sure you understand what it is
doing. Then run it (this may take a little time) and observe the results. Does the observed
behavior look reasonable and agree with the theory?

105


